Perioperative Management of Cardiac Pacing/Defibrillation Devices

Denice Hodgson-Zingman, MD, FHRS
Associate Professor of Medicine
Director, Clinical Cardiac Electrophysiology

Disclosure

• Nothing relevant to disclose

EMI is most common operative concern

Improvements in shielding and lead insulation have helped OTOH, the devices have become increasingly complex.
How pacing devices generally work:

- Pacemakers are simply a series of timers that may be programmed to be triggered or reset by cardiac events.
- Pacing occurs when one or more specified timers has been activated and then runs out without being reset.

LOTS of timers on modern devices - allows for complex pacing behavior:

How pacing devices generally work:

Pacemaker dependent patient with complete AV block
Ventricular pacing inhibited by noise
Electrocautery or other non-cardiac electrical signals can:
• Inappropriately cause a timer to be reset (inhibits pacing)
• Inappropriately trigger a timer to start (triggers pacing)
• Activate certain rate response sensors
• Cause confusing mode-switching
• Cause electrical reset of the device (rare)

How ICDs (implantable cardioverter defibrillators) generally work:
• All transvenous ICDs are also pacemakers
• ICDs categorize ventricular events as VT/VF primarily based on rate
• ICDs can immediately deliver anti-tachycardia pacing (ATP) once VT/VF is detected
• ICDs
 – 1. charge up (with or without ATP)
 – 2. reassess that VT/VF is still present
 – 3. deliver a shock
 – 4. assess for success
 – 5. repeat if necessary

How ICDs generally work:
How ICDs generally work:

- Atrial signal
- Ventricular signal
- "Lead II" signal

Markers:

- Noise detection resulting in ICD shock (non-pacemaker dependent patient)

Why did the noise stop with the shock? Probably the shock stopped the surgeon or patient — whoever was causing the noise — and they stopped what they were doing.
Electrocautery or other non-cardiac electrical signals can:

- Have all the same effects on an ICD as on pacemakers
- In addition, cause inappropriate ATP or shocks that can:
 - Induce VT/VF
 - Cause a patient to move suddenly if not paralyzed (shock only)
 - Cause pain if patient not sedated (shock only)
 - Surprise/alarm medical personnel
 - Cardiovert AF inadvertently, causing risk of CVA

Types of cautery and effect on pacing devices/defibrillators

Unipolar/Monopolar Cautery
- Unlikely to be detected by pacemakers/ICDs when used below the femoral head (if the grounding patch is also below the hip joint)

Bipolar Cautery
- Unlikely to be detected by pacemakers/ICDs unless used directly on or over the device generator or exposed leads.
Asynchronous pacing
• To make pacemaker “blind” to noise, their ability to sense events is turned off.
• This is usually indicated as VOO or DOO pacing.
• As a consequence, the pacemaker also cannot sense intrinsic cardiac activity.
• Thus the pacemaker blindly paces, no matter what.
• It will pace on top of QRS complexes, T-waves, through AF, VF, etc.

Tachy detections/therapies
• ICD detection of arrhythmias is separate from pacing functions and programming.
• ICD detections must be separately disabled to prevent detection of noise.

Pacemaker/ICD management options for procedures with cautery
• Do nothing – proceed with surgery
• Short bursts of cautery < 5 seconds each
• Magnet over device (remove after procedure)
 – pacemakers -> asynchronous
 – ICDs -> inhibits shocks (except in some Biotronik devices) but doesn’t alter pacing
• Reprogram device for procedure and restore settings after procedure
Cautery mode programming

• Advantages:
 – No ICD shocks or ATP
 – Paces, no matter what

• Disadvantages:
 – No ICD shocks or ATP
 – Paces no matter what

Cautery mode programming

• Asynchronous pacing = AV dissociation, possible “R-on-T” induction of VT/VF
• No shocks = potential delay to treatment of actual VT/VF
• Possibility that baseline device settings will not be restored properly or promptly
• Internal Medicine M&M on patient who had symptomatic asynchronous pacing post-op
• Two patients a couple years ago presented to post-op clinic follow-up with ICDs still off
Peri-operative considerations

- On what part of the body will the operative procedure be performed? Is magnet use practical?
- Will cautery be used and, if so, unipolar (monopolar) or bipolar?
- Is the patient dependent on pacing to maintain an adequate heart rate, particularly given suppressive effects of anesthesia?
- Does the patient have a device with ICD functions?

Guidelines

This document was developed as a joint project with the American Society of Anesthesiologists (ASA), and in collaboration with the American Heart Association (AHA), and the Society of Thoracic Surgeons (STS)

George H. Cosgrove, MD, FHRS,1 Jeanne E. Poole, MD, FHRS,2 Marc A. Russer, PhD, MD,36
Samuel J. Asirvatham, MD, FHRS,4 Alan Cheng, MD, FHRS,5 Woon K. Chung, MD, FHRS,6
T. Bruce Ferguson, Jr., MD, FHRS,7 John D. Gallagher, MD,8 Michael K. Gold, MD, PhD, FHRS,9
Robert H. Hoyt, MD,10 Samuel Indrei, MD,11,12 Fred M. Kuznetsov, MD, FHRS,12
Lisa Pudvate Meizner, MD, FDCAF, FHRS,13 Roxana Thompson, MD,13

Heart Rhythm 2011; 8:1114-1152.

Guidelines - Caveats

- No randomized trials
- Case reports, case series, expert opinion, input from device manufacturers/engineers
- No “level of evidence”
- A moving target
Guidelines – Overview

- Obtain a pre-operative “prescription” from EP whenever possible – may be by record review.
- Reprogramming is only necessary in some cases (dependent patients with ICDs, or dependent patients when magnet not practical) and should not be performed routinely as can cause harm.
- If an emergency, use short bursts of cautery and, if an ICD is in place, use a magnet if available.
- *Routine* use of a magnet on pacing devices (that aren’t ICDs) is not recommended.

Guidelines – Overview

- Minimize EMI to the device:
 - Place ground patch so that CIED is not between ground and site of cautery.
 - Use bipolar cautery when possible.
 - Avoid cautery directly over the can and leads when possible.
 - Avoid placing R2 defibrillation pads directly on the pulse generator.
- Keep patient on telemetry until magnet removed and any program settings are restored.

Take-away points

- While it seems safer/more robust to reprogram pacing devices for surgery, such changes are an opportunity for harm:
 - Fairly intelligent device function is replaced by simplistic function or no function (in the case of ICD therapies).
 - Risk that functions may not be restored correctly (or at all).
 - What is often perceived as greater control by reprogramming is actually relinquishing control as the simplistic function can now only be manipulated using a programmer.
<table>
<thead>
<tr>
<th>Take-away points</th>
</tr>
</thead>
<tbody>
<tr>
<td>– for non-emergency procedures, pre-op review for patient- and procedure-specific device management recommendations by EP team (guideline driven) prior to patient arriving in OR.</td>
</tr>
<tr>
<td>– for true emergencies (and EP unavailable for consultation): if unipolar cautery used above the hips use</td>
</tr>
<tr>
<td>• a magnet on ICDs</td>
</tr>
<tr>
<td>• a magnet on dependent patients with a pacemaker</td>
</tr>
<tr>
<td>• short bursts of cautery in dependent patients with ICDs or pacemakers.</td>
</tr>
</tbody>
</table>